Efficient simulation techniques for biochemical reaction networks

نویسنده

  • Christopher Lester
چکیده

Discrete-state, continuous-time Markov models are becoming commonplace in the modelling of biochemical processes. The mathematical formulations that such models lead to are opaque, and, due to their complexity, are often considered analytically intractable. As such, a variety of Monte Carlo simulation algorithms have been developed to explore model dynamics empirically. Whilst well-known methods, such as the Gillespie Algorithm, can be implemented to investigate a given model, the computational demands of traditional simulation techniques remain a significant barrier to modern research. In order to further develop and explore biologically relevant stochastic models, new and efficient computational methods are required. In this thesis, high-performance simulation algorithms are developed to estimate summary statistics that characterise a chosen reaction network. The algorithms make use of variance reduction techniques, which exploit statistical properties of the model dynamics, so that the statistics can be computed efficiently. The multi-level method is an example of a variance reduction technique. The method estimates summary statistics of well-mixed, spatially homogeneous models by using estimates from multiple ensembles of sample paths of different accuracies. In this thesis, the multi-level method is developed in three directions: firstly, a nuanced implementation framework is described; secondly, a reformulated method is applied to stiff reaction systems; and, finally, different approaches to variance reduction are implemented and compared. The variance reduction methods that underpin the multi-level method are then re-purposed to understand how the dynamics of a spatially-extended Markov model are affected by changes in its input parameters. By exploiting the inherent dynamics of spatially-extended models, an efficient finite difference scheme is used to estimate parametric sensitivities robustly. The new simulation methods are tested for functionality and efficiency with a range of illustrative examples. The thesis concludes with a discussion of our findings, and a number of future research directions are proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical modeling for nonlinear biochemical reaction networks

Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...

متن کامل

APPROACHES TO COMPLEXITY REDUCTION IN A SYSTEMS BIOLOGY RESEARCH ENVIRONMENT ( SYCAMORE ) Irina Surovtsova

Due to the complexity of biochemical reaction networks, socalled complexity reduction algorithms play a crucial role for making simulations efficient and for dissecting biochemical networks into meaningful subnetworks for analysis. Here, different approaches are presented, which we are developing in the context of a computational research environment for systems biology (SYCAMORE). These approa...

متن کامل

Spatial-Stochastic Simulation of Reaction-Diffusion Systems

In biological systems, biochemical networks play a crucial role, implementing a broad range of vital functions from regulation and communication to resource transport and shape alteration. While biochemical networks naturally occur at low copy numbers and in a spatial setting, this fact often is ignored and well-stirred conditions are assumed for simplicity. Yet, it is now increasingly becoming...

متن کامل

Stochastic Simulation of Biochemical Reaction Systems

This chapter presents the foundational theory of the stochastic chemical kinetics for modeling biochemical reaction networks, of which the discreteness in population of species and the randomness of reactions are treated as an intrinsic part. The dynamical behavior of the biochemical reactions, based on the fundamental premise of the stochastic chemical kinetics, is exactly described by the che...

متن کامل

A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.

The time evolution of species concentrations in biochemical reaction networks is often modeled using the stochastic simulation algorithm (SSA) [Gillespie, J. Phys. Chem. 81, 2340 (1977)]. The computational cost of the original SSA scaled linearly with the number of reactions in the network. Gibson and Bruck developed a logarithmic scaling version of the SSA which uses a priority queue or binary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017